MySQL憑借著出色的性能、低廉的成本、豐富的資源,已經(jīng)成為絕大多數(shù)互聯(lián)網(wǎng)公司的首選關系型數(shù)據(jù)庫。雖然性能出色,但所謂“好馬配好鞍”,如何能夠更好的使用它,已經(jīng)成為開發(fā)工程師的必修課,我們經(jīng)常會從職位描述上看到諸如“精通MySQL”、“SQL語句優(yōu)化”、“了解數(shù)據(jù)庫原理”等要求。我們知道一般的應用系統(tǒng),讀寫比例在10:1左右,而且插入操作和一般的更新操作很少出現(xiàn)性能問題,遇到最多的,也是最容易出問題的,還是一些復雜的查詢操作,所以查詢語句的優(yōu)化顯然是重中之重。 本人從13年7月份起,一直在美團核心業(yè)務系統(tǒng)部做慢查詢的優(yōu)化工作,共計十余個系統(tǒng),累計解決和積累了上百個慢查詢案例。隨著業(yè)務的復雜性提升,遇到的問題千奇百怪,五花八門,匪夷所思。本文旨在以開發(fā)工程師的角度來解釋數(shù)據(jù)庫索引的原理和如何優(yōu)化慢查詢。 一個慢查詢引發(fā)的思考
系統(tǒng)使用者反應有一個功能越來越慢,于是工程師找到了上面的SQL。 并且興致沖沖的找到了我,“這個SQL需要優(yōu)化,給我把每個字段都加上索引” 我很驚訝,問道“為什么需要每個字段都加上索引?” “把查詢的字段都加上索引會更快”工程師信心滿滿 “這種情況完全可以建一個聯(lián)合索引,因為是最左前綴匹配,所以operate_time需要放到最后,而且還需要把其他相關的查詢都拿來,需要做一個綜合評估?!?/span> “聯(lián)合索引?最左前綴匹配?綜合評估?”工程師不禁陷入了沉思。 多數(shù)情況下,我們知道索引能夠提高查詢效率,但應該如何建立索引?索引的順序如何?許多人卻只知道大概。其實理解這些概念并不難,而且索引的原理遠沒有想象的那么復雜。 MySQL索引原理索引目的索引的目的在于提高查詢效率,可以類比字典,如果要查“mysql”這個單詞,我們肯定需要定位到m字母,然后從下往下找到y(tǒng)字母,再找到剩下的sql。如果沒有索引,那么你可能需要把所有單詞看一遍才能找到你想要的,如果我想找到m開頭的單詞呢?或者ze開頭的單詞呢?是不是覺得如果沒有索引,這個事情根本無法完成? 索引原理除了詞典,生活中隨處可見索引的例子,如火車站的車次表、圖書的目錄等。它們的原理都是一樣的,通過不斷的縮小想要獲得數(shù)據(jù)的范圍來篩選出最終想要的結(jié)果,同時把隨機的事件變成順序的事件,也就是我們總是通過同一種查找方式來鎖定數(shù)據(jù)。 數(shù)據(jù)庫也是一樣,但顯然要復雜許多,因為不僅面臨著等值查詢,還有范圍查詢(>、<、between、in)、模糊查詢(like)、并集查詢(or)等等。數(shù)據(jù)庫應該選擇怎么樣的方式來應對所有的問題呢?我們回想字典的例子,能不能把數(shù)據(jù)分成段,然后分段查詢呢?最簡單的如果1000條數(shù)據(jù),1到100分成第一段,101到200分成第二段,201到300分成第三段……這樣查第250條數(shù)據(jù),只要找第三段就可以了,一下子去除了90%的無效數(shù)據(jù)。但如果是1千萬的記錄呢,分成幾段比較好?稍有算法基礎的同學會想到搜索樹,其平均復雜度是lgN,具有不錯的查詢性能。但這里我們忽略了一個關鍵的問題,復雜度模型是基于每次相同的操作成本來考慮的,數(shù)據(jù)庫實現(xiàn)比較復雜,數(shù)據(jù)保存在磁盤上,而為了提高性能,每次又可以把部分數(shù)據(jù)讀入內(nèi)存來計算,因為我們知道訪問磁盤的成本大概是訪問內(nèi)存的十萬倍左右,所以簡單的搜索樹難以滿足復雜的應用場景。 磁盤IO與預讀前面提到了訪問磁盤,那么這里先簡單介紹一下磁盤IO和預讀,磁盤讀取數(shù)據(jù)靠的是機械運動,每次讀取數(shù)據(jù)花費的時間可以分為尋道時間、旋轉(zhuǎn)延遲、傳輸時間三個部分,尋道時間指的是磁臂移動到指定磁道所需要的時間,主流磁盤一般在5ms以下;旋轉(zhuǎn)延遲就是我們經(jīng)常聽說的磁盤轉(zhuǎn)速,比如一個磁盤7200轉(zhuǎn),表示每分鐘能轉(zhuǎn)7200次,也就是說1秒鐘能轉(zhuǎn)120次,旋轉(zhuǎn)延遲就是1/120/2 = 4.17ms;傳輸時間指的是從磁盤讀出或?qū)?shù)據(jù)寫入磁盤的時間,一般在零點幾毫秒,相對于前兩個時間可以忽略不計。那么訪問一次磁盤的時間,即一次磁盤IO的時間約等于5+4.17 = 9ms左右,聽起來還挺不錯的,但要知道一臺500 -MIPS的機器每秒可以執(zhí)行5億條指令,因為指令依靠的是電的性質(zhì),換句話說執(zhí)行一次IO的時間可以執(zhí)行40萬條指令,數(shù)據(jù)庫動輒十萬百萬乃至千萬級數(shù)據(jù),每次9毫秒的時間,顯然是個災難。下圖是計算機硬件延遲的對比圖,供大家參考: 考慮到磁盤IO是非常高昂的操作,計算機操作系統(tǒng)做了一些優(yōu)化,當一次IO時,不光把當前磁盤地址的數(shù)據(jù),而是把相鄰的數(shù)據(jù)也都讀取到內(nèi)存緩沖區(qū)內(nèi),因為局部預讀性原理告訴我們,當計算機訪問一個地址的數(shù)據(jù)的時候,與其相鄰的數(shù)據(jù)也會很快被訪問到。每一次IO讀取的數(shù)據(jù)我們稱之為一頁(page)。具體一頁有多大數(shù)據(jù)跟操作系統(tǒng)有關,一般為4k或8k,也就是我們讀取一頁內(nèi)的數(shù)據(jù)時候,實際上才發(fā)生了一次IO,這個理論對于索引的數(shù)據(jù)結(jié)構(gòu)設計非常有幫助。 索引的數(shù)據(jù)結(jié)構(gòu)前面講了生活中索引的例子,索引的基本原理,數(shù)據(jù)庫的復雜性,又講了操作系統(tǒng)的相關知識,目的就是讓大家了解,任何一種數(shù)據(jù)結(jié)構(gòu)都不是憑空產(chǎn)生的,一定會有它的背景和使用場景,我們現(xiàn)在總結(jié)一下,我們需要這種數(shù)據(jù)結(jié)構(gòu)能夠做些什么,其實很簡單,那就是:每次查找數(shù)據(jù)時把磁盤IO次數(shù)控制在一個很小的數(shù)量級,最好是常數(shù)數(shù)量級。那么我們就想到如果一個高度可控的多路搜索樹是否能滿足需求呢?就這樣,b+樹應運而生。 詳解b+樹如上圖,是一顆b+樹,關于b+樹的定義可以參見B+樹,這里只說一些重點,淺藍色的塊我們稱之為一個磁盤塊,可以看到每個磁盤塊包含幾個數(shù)據(jù)項(深藍色所示)和指針(黃色所示),如磁盤塊1包含數(shù)據(jù)項17和35,包含指針P1、P2、P3,P1表示小于17的磁盤塊,P2表示在17和35之間的磁盤塊,P3表示大于35的磁盤塊。真實的數(shù)據(jù)存在于葉子節(jié)點即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非葉子節(jié)點只不存儲真實的數(shù)據(jù),只存儲指引搜索方向的數(shù)據(jù)項,如17、35并不真實存在于數(shù)據(jù)表中。 b+樹的查找過程如圖所示,如果要查找數(shù)據(jù)項29,那么首先會把磁盤塊1由磁盤加載到內(nèi)存,此時發(fā)生一次IO,在內(nèi)存中用二分查找確定29在17和35之間,鎖定磁盤塊1的P2指針,內(nèi)存時間因為非常短(相比磁盤的IO)可以忽略不計,通過磁盤塊1的P2指針的磁盤地址把磁盤塊3由磁盤加載到內(nèi)存,發(fā)生第二次IO,29在26和30之間,鎖定磁盤塊3的P2指針,通過指針加載磁盤塊8到內(nèi)存,發(fā)生第三次IO,同時內(nèi)存中做二分查找找到29,結(jié)束查詢,總計三次IO。真實的情況是,3層的b+樹可以表示上百萬的數(shù)據(jù),如果上百萬的數(shù)據(jù)查找只需要三次IO,性能提高將是巨大的,如果沒有索引,每個數(shù)據(jù)項都要發(fā)生一次IO,那么總共需要百萬次的IO,顯然成本非常非常高。 b+樹性質(zhì)1.通過上面的分析,我們知道IO次數(shù)取決于b+數(shù)的高度h,假設當前數(shù)據(jù)表的數(shù)據(jù)為N,每個磁盤塊的數(shù)據(jù)項的數(shù)量是m,則有h=㏒(m+1)N,當數(shù)據(jù)量N一定的情況下,m越大,h越??;而m = 磁盤塊的大小 / 數(shù)據(jù)項的大小,磁盤塊的大小也就是一個數(shù)據(jù)頁的大小,是固定的,如果數(shù)據(jù)項占的空間越小,數(shù)據(jù)項的數(shù)量越多,樹的高度越低。這就是為什么每個數(shù)據(jù)項,即索引字段要盡量的小,比如int占4字節(jié),要比bigint8字節(jié)少一半。這也是為什么b+樹要求把真實的數(shù)據(jù)放到葉子節(jié)點而不是內(nèi)層節(jié)點,一旦放到內(nèi)層節(jié)點,磁盤塊的數(shù)據(jù)項會大幅度下降,導致樹增高。當數(shù)據(jù)項等于1時將會退化成線性表。 2.當b+樹的數(shù)據(jù)項是復合的數(shù)據(jù)結(jié)構(gòu),比如(name,age,sex)的時候,b+數(shù)是按照從左到右的順序來建立搜索樹的,比如當(張三,20,F)這樣的數(shù)據(jù)來檢索的時候,b+樹會優(yōu)先比較name來確定下一步的所搜方向,如果name相同再依次比較age和sex,最后得到檢索的數(shù)據(jù);但當(20,F)這樣的沒有name的數(shù)據(jù)來的時候,b+樹就不知道下一步該查哪個節(jié)點,因為建立搜索樹的時候name就是第一個比較因子,必須要先根據(jù)name來搜索才能知道下一步去哪里查詢。比如當(張三,F)這樣的數(shù)據(jù)來檢索時,b+樹可以用name來指定搜索方向,但下一個字段age的缺失,所以只能把名字等于張三的數(shù)據(jù)都找到,然后再匹配性別是F的數(shù)據(jù)了, 這個是非常重要的性質(zhì),即索引的最左匹配特性。 慢查詢優(yōu)化關于MySQL索引原理是比較枯燥的東西,大家只需要有一個感性的認識,并不需要理解得非常透徹和深入。我們回頭來看看一開始我們說的慢查詢,了解完索引原理之后,大家是不是有什么想法呢?先總結(jié)一下索引的幾大基本原則 建索引的幾大原則1.最左前綴匹配原則,非常重要的原則,mysql會一直向右匹配直到遇到范圍查詢(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)順序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調(diào)整。 2.=和in可以亂序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意順序,mysql的查詢優(yōu)化器會幫你優(yōu)化成索引可以識別的形式 3.盡量選擇區(qū)分度高的列作為索引,區(qū)分度的公式是count(distinct col)/count(*),表示字段不重復的比例,比例越大我們掃描的記錄數(shù)越少,唯一鍵的區(qū)分度是1,而一些狀態(tài)、性別字段可能在大數(shù)據(jù)面前區(qū)分度就是0,那可能有人會問,這個比例有什么經(jīng)驗值嗎?使用場景不同,這個值也很難確定,一般需要join的字段我們都要求是0.1以上,即平均1條掃描10條記錄 4.索引列不能參與計算,保持列“干凈”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡單,b+樹中存的都是數(shù)據(jù)表中的字段值,但進行檢索時,需要把所有元素都應用函數(shù)才能比較,顯然成本太大。所以語句應該寫成create_time = unix_timestamp(’2014-05-29’); 5.盡量的擴展索引,不要新建索引。比如表中已經(jīng)有a的索引,現(xiàn)在要加(a,b)的索引,那么只需要修改原來的索引即可 回到開始的慢查詢根據(jù)最左匹配原則,最開始的sql語句的索引應該是status、operator_id、type、operate_time的聯(lián)合索引;其中status、operator_id、type的順序可以顛倒,所以我才會說,把這個表的所有相關查詢都找到,會綜合分析;
那么索引建立成(status,type,operator_id,operate_time)就是非常正確的,因為可以覆蓋到所有情況。這個就是利用了索引的最左匹配的原則 查詢優(yōu)化神器 – explain命令關于explain命令相信大家并不陌生,具體用法和字段含義可以參考官網(wǎng)explain-output,這里需要強調(diào)rows是核心指標,絕大部分rows小的語句執(zhí)行一定很快(有例外,下面會講到)。所以優(yōu)化語句基本上都是在優(yōu)化rows。 慢查詢優(yōu)化基本步驟0.先運行看看是否真的很慢,注意設置SQL_NO_CACHE
幾個慢查詢案例下面幾個例子詳細解釋了如何分析和優(yōu)化慢查詢 復雜語句寫法很多情況下,我們寫SQL只是為了實現(xiàn)功能,這只是第一步,不同的語句書寫方式對于效率往往有本質(zhì)的差別,這要求我們對mysql的執(zhí)行計劃和索引原則有非常清楚的認識,請看下面的語句
0.先運行一下,53條記錄 1.87秒,又沒有用聚合語句,比較慢
1.explain
簡述一下執(zhí)行計劃,首先mysql根據(jù)idx_last_upd_date索引掃描cm_log表獲得379條記錄;然后查表掃描了63727條記錄,分為兩部分,derived表示構(gòu)造表,也就是不存在的表,可以簡單理解成是一個語句形成的結(jié)果集,后面的數(shù)字表示語句的ID。derived2表示的是ID = 2的查詢構(gòu)造了虛擬表,并且返回了63727條記錄。我們再來看看ID = 2的語句究竟做了寫什么返回了這么大量的數(shù)據(jù),首先全表掃描employee表13317條記錄,然后根據(jù)索引emp_certificate_empid關聯(lián)emp_certificate表,rows = 1表示,每個關聯(lián)都只鎖定了一條記錄,效率比較高。獲得后,再和cm_log的379條記錄根據(jù)規(guī)則關聯(lián)。從執(zhí)行過程上可以看出返回了太多的數(shù)據(jù),返回的數(shù)據(jù)絕大部分cm_log都用不到,因為cm_log只鎖定了379條記錄。 如何優(yōu)化呢?可以看到我們在運行完后還是要和cm_log做join,那么我們能不能之前和cm_log做join呢?仔細分析語句不難發(fā)現(xiàn),其基本思想是如果cm_log的ref_table是EmpCertificate就關聯(lián)emp_certificate表,如果ref_table是Employee就關聯(lián)employee表,我們完全可以拆成兩部分,并用union連接起來,注意這里用union,而不用union all是因為原語句有“distinct”來得到唯一的記錄,而union恰好具備了這種功能。如果原語句中沒有distinct不需要去重,我們就可以直接使用union all了,因為使用union需要去重的動作,會影響SQL性能。
4.不需要了解業(yè)務場景,只需要改造的語句和改造之前的語句保持結(jié)果一致 5.現(xiàn)有索引可以滿足,不需要建索引 6.用改造后的語句實驗一下,只需要10ms 降低了近200倍!
明確應用場景舉這個例子的目的在于顛覆我們對列的區(qū)分度的認知,一般上我們認為區(qū)分度越高的列,越容易鎖定更少的記錄,但在一些特殊的情況下,這種理論是有局限性的
0.先看看運行多長時間,951條數(shù)據(jù)6.22秒,真的很慢
1.先explain,rows達到了361萬,type = ALL表明是全表掃描
2.所有字段都應用查詢返回記錄數(shù),因為是單表查詢 0已經(jīng)做過了951條 3.讓explain的rows 盡量逼近951 看一下accurate_result = 1的記錄數(shù)
我們看到accurate_result這個字段的區(qū)分度非常低,整個表只有-1,0,1三個值,加上索引也無法鎖定特別少量的數(shù)據(jù) 再看一下sync_status字段的情況
同樣的區(qū)分度也很低,根據(jù)理論,也不適合建立索引 問題分析到這,好像得出了這個表無法優(yōu)化的結(jié)論,兩個列的區(qū)分度都很低,即便加上索引也只能適應這種情況,很難做普遍性的優(yōu)化,比如當sync_status 0、3分布的很平均,那么鎖定記錄也是百萬級別的 4.找業(yè)務方去溝通,看看使用場景。業(yè)務方是這么來使用這個SQL語句的,每隔五分鐘會掃描符合條件的數(shù)據(jù),處理完成后把sync_status這個字段變成1,五分鐘符合條件的記錄數(shù)并不會太多,1000個左右。了解了業(yè)務方的使用場景后,優(yōu)化這個SQL就變得簡單了,因為業(yè)務方保證了數(shù)據(jù)的不平衡,如果加上索引可以過濾掉絕大部分不需要的數(shù)據(jù) 5.根據(jù)建立索引規(guī)則,使用如下語句建立索引
6.觀察預期結(jié)果,發(fā)現(xiàn)只需要200ms,快了30多倍。
我們再來回顧一下分析問題的過程,單表查詢相對來說比較好優(yōu)化,大部分時候只需要把where條件里面的字段依照規(guī)則加上索引就好,如果只是這種“無腦”優(yōu)化的話,顯然一些區(qū)分度非常低的列,不應該加索引的列也會被加上索引,這樣會對插入、更新性能造成嚴重的影響,同時也有可能影響其它的查詢語句。所以我們第4步調(diào)差SQL的使用場景非常關鍵,我們只有知道這個業(yè)務場景,才能更好地輔助我們更好的分析和優(yōu)化查詢語句。 無法優(yōu)化的語句
還是幾個步驟 0.先看語句運行多長時間,10條記錄用了13秒,已經(jīng)不可忍受
從執(zhí)行計劃上看,mysql先查org_emp_info表掃描8849記錄,再用索引idx_userid_status關聯(lián)branch_user表,再用索引idx_branch_id關聯(lián)contact_branch表,最后主鍵關聯(lián)contact表。 rows返回的都非常少,看不到有什么異常情況。我們在看一下語句,發(fā)現(xiàn)后面有order by + limit組合,會不會是排序量太大搞的?于是我們簡化SQL,去掉后面的order by 和 limit,看看到底用了多少記錄來排序
發(fā)現(xiàn)排序之前居然鎖定了778878條記錄,如果針對70萬的結(jié)果集排序,將是災難性的,怪不得這么慢,那我們能不能換個思路,先根據(jù)contact的created_time排序,再來join會不會比較快呢? 于是改造成下面的語句,也可以用straight_join來優(yōu)化
驗證一下效果 預計在1ms內(nèi),提升了13000多倍!
本以為至此大工告成,但我們在前面的分析中漏了一個細節(jié),先排序再join和先join再排序理論上開銷是一樣的,為何提升這么多是因為有一個limit!大致執(zhí)行過程是:mysql先按索引排序得到前10條記錄,然后再去join過濾,當發(fā)現(xiàn)不夠10條的時候,再次去10條,再次join,這顯然在內(nèi)層join過濾的數(shù)據(jù)非常多的時候,將是災難的,極端情況,內(nèi)層一條數(shù)據(jù)都找不到,mysql還傻乎乎的每次取10條,幾乎遍歷了這個數(shù)據(jù)表! 用不同參數(shù)的SQL試驗下
2 min 18.99 sec!比之前的情況還糟糕很多。由于mysql的nested loop機制,遇到這種情況,基本是無法優(yōu)化的。這條語句最終也只能交給應用系統(tǒng)去優(yōu)化自己的邏輯了。 通過這個例子我們可以看到,并不是所有語句都能優(yōu)化,而往往我們優(yōu)化時,由于SQL用例回歸時落掉一些極端情況,會造成比原來還嚴重的后果。所以,第一:不要指望所有語句都能通過SQL優(yōu)化,第二:不要過于自信,只針對具體case來優(yōu)化,而忽略了更復雜的情況。 慢查詢的案例就分析到這兒,以上只是一些比較典型的案例。我們在優(yōu)化過程中遇到過超過1000行,涉及到16個表join的“垃圾SQL”,也遇到過線上線下數(shù)據(jù)庫差異導致應用直接被慢查詢拖死,也遇到過varchar等值比較沒有寫單引號,還遇到過笛卡爾積查詢直接把從庫搞死。再多的案例其實也只是一些經(jīng)驗的積累,如果我們熟悉查詢優(yōu)化器、索引的內(nèi)部原理,那么分析這些案例就變得特別簡單了。 寫在后面的話本文以一個慢查詢案例引入了MySQL索引原理、優(yōu)化慢查詢的一些方法論;并針對遇到的典型案例做了詳細的分析。其實做了這么長時間的語句優(yōu)化后才發(fā)現(xiàn),任何數(shù)據(jù)庫層面的優(yōu)化都抵不上應用系統(tǒng)的優(yōu)化,同樣是MySQL,可以用來支撐Google/FaceBook/Taobao應用,但可能連你的個人網(wǎng)站都撐不住。套用最近比較流行的話:“查詢?nèi)菀?,?yōu)化不易,且寫且珍惜!” 參考參考文獻如下: 1.《高性能MySQL》 出處:美團技術(shù)博客 |
|
來自: 橙zc > 《Oracle MySQL》