發(fā)文章
發(fā)文工具
撰寫
網(wǎng)文摘手
文檔
視頻
思維導(dǎo)圖
隨筆
相冊(cè)
原創(chuàng)同步助手
其他工具
圖片轉(zhuǎn)文字
文件清理
AI助手
留言交流
I'd like to introduce you to an emerging area of science, one that is still speculative but hugely exciting, and certainly one that's growing very rapidly. Quantum biology asks a very simple question: Does quantum mechanics -- that weird and wonderful and powerful theory of the subatomic world of atoms and molecules that underpins so much of modern physics and chemistry -- also play a role inside the living cell? In other words: Are there processes, mechanisms, phenomena in living organisms that can only be explained with a helping hand from quantum mechanics? Now, quantum biology isn't new; it's been around since the early 1930s. But it's only in the last decade or so that careful experiments -- in biochemistry labs, using spectroscopy -- have shown very clear, firm evidence that there are certain specific mechanisms that require quantum mechanics to explain them.
Quantum biology brings together quantum physicists, biochemists, molecular biologists -- it's a very interdisciplinary field. I come from quantum physics, so I'm a nuclear physicist.
I've spent more than three decades trying to get my head around quantum mechanics. One of the founders of quantum mechanics, Niels Bohr, said, If you're not astonished by it, then you haven't understood it. So I sort of feel happy that I'm still astonished by it. That's a good thing. But it means I study the very smallest structures in the universe -- the building blocks of reality. If we think about the scale of size, start with an everyday object like the tennis ball, and just go down orders of magnitude in size -- from the eye of a needle down to a cell, down to a bacterium, down to an enzyme -- you eventually reach the nano-world.
Now, nanotechnology may be a term you've heard of. A nanometer is a billionth of a meter. My area is the atomic nucleus, which is the tiny dot inside an atom. It's even smaller in scale. This is the domain of quantum mechanics, and physicists and chemists have had a long time to try and get used to it. Biologists, on the other hand, have got off lightly, in my view. They are very happy with their balls-and-sticks models of molecules.
(Laughter)
The balls are the atoms, the sticks are the bonds between the atoms. And when they can't build them physically in the lab, nowadays, they have very powerful computers that will simulate a huge molecule. This is a protein made up of 100,000 atoms. It doesn't really require much in the way of quantum mechanics to explain it. Quantum mechanics was developed in the 1920s. It is a set of beautiful and powerful mathematical rules and ideas that explain the world of the very small. And it's a world that's very different from our everyday world, made up of trillions of atoms. It's a world built on probability and chance. It's a fuzzy world. It's a world of phantoms, where particles can also behave like spread-out waves.
If we imagine quantum mechanics or quantum physics, then, as the fundamental foundation of reality itself, then it's not surprising that we say quantum physics underpins organic chemistry. After all, it gives us the rules that tell us how the atoms fit together to make organic molecules. Organic chemistry, scaled up in complexity, gives us molecular biology, which of course leads to life itself. So in a way, it's sort of not surprising. It's almost trivial. You say, "Well, of course life ultimately must depend of quantum mechanics." But so does everything else. So does all inanimate matter, made up of trillions of atoms.
Ultimately, there's a quantum level where we have to delve into this weirdness. But in everyday life, we can forget about it. Because once you put together trillions of atoms, that quantum weirdness just dissolves away. Quantum biology isn't about this. Quantum biology isn't this obvious. Of course quantum mechanics underpins life at some molecular level. Quantum biology is about looking for the non-trivial -- the counterintuitive ideas in quantum mechanics -- and to see if they do, indeed, play an important role in describing the processes of life.
Here is my perfect example of the counterintuitiveness of the quantum world. This is the quantum skier. He seems to be intact, he seems to be perfectly healthy, and yet, he seems to have gone around both sides of that tree at the same time. Well, if you saw tracks like that you'd guess it was some sort of stunt, of course. But in the quantum world, this happens all the time. Particles can multitask, they can be in two places at once. They can do more than one thing at the same time. Particles can behave like spread-out waves. It's almost like magic.
Physicists and chemists have had nearly a century of trying to get used to this weirdness. I don't blame the biologists for not having to or wanting to learn quantum mechanics.
You see, this weirdness is very delicate; and we physicists work very hard to maintain it in our labs. We cool our system down to near absolute zero, we carry out our experiments in vacuums, we try and isolate it from any external disturbance. That's very different from the warm, messy, noisy environment of a living cell. Biology itself, if you think of molecular biology, seems to have done very well in describing all the processes of life in terms of chemistry -- chemical reactions. And these are reductionist, deterministic chemical reactions, showing that, essentially, life is made of the same stuff as everything else, and if we can forget about quantum mechanics in the macro world, then we should be able to forget about it in biology, as well.
Well, one man begged to differ with this idea. Erwin Schr?dinger, of Schr?dinger's Cat fame, was an Austrian physicist. He was one of the founders of quantum mechanics in the 1920s. In 1944, he wrote a book called "What is Life?" It was tremendously influential. It influenced Francis Crick and James Watson, the discoverers of the double-helix structure of DNA. To paraphrase a description in the book, he says: At the molecular level, living organisms have a certain order, a structure to them that's very different from the random thermodynamic jostling of atoms and molecules in inanimate matter of the same complexity.
In fact, living matter seems to behave in this order, in a structure, just like inanimate matter cooled down to near absolute zero, where quantum effects play a very important role. There's something special about the structure -- the order -- inside a living cell. So, Schr?dinger speculated that maybe quantum mechanics plays a role in life. It's a very speculative, far-reaching idea, and it didn't really go very far.
But as I mentioned at the start, in the last 10 years, there have been experiments emerging, showing where some of these certain phenomena in biology do seem to require quantum mechanics.
I want to share with you just a few of the exciting ones. This is one of the best-known phenomena in the quantum world, quantum tunneling. The box on the left shows the wavelike, spread-out distribution of a quantum entity -- a particle, like an electron, which is not a little ball bouncing off a wall. It's a wave that has a certain probability of being able to permeate through a solid wall, like a phantom leaping through to the other side. You can see a faint smudge of light in the right-hand box. Quantum tunneling suggests that a particle can hit an impenetrable barrier, and yet somehow, as though by magic, disappear from one side and reappear on the other. The nicest way of explaining it is if you want to throw a ball over a wall, you have to give it enough energy to get over the top of the wall. In the quantum world, you don't have to throw it over the wall, you can throw it at the wall, and there's a certain non-zero probability that it'll disappear on your side, and reappear on the other.
This isn't speculation, by the way. We're happy -- well, "happy" is not the right word --
we are familiar with this.
Quantum tunneling takes place all the time; in fact, it's the reason our Sun shines. The particles fuse together, and the Sun turns hydrogen into helium through quantum tunneling. Back in the 70s and 80s, it was discovered that quantum tunneling also takes place inside living cells. Enzymes, those workhorses of life, the catalysts of chemical reactions -- enzymes are biomolecules that speed up chemical reactions in living cells, by many, many orders of magnitude. And it's always been a mystery how they do this.
Well, it was discovered that one of the tricks that enzymes have evolved to make use of, is by transferring subatomic particles, like electrons and indeed protons, from one part of a molecule to another via quantum tunneling. It's efficient, it's fast, it can disappear -- a proton can disappear from one place, and reappear on the other. Enzymes help this take place.
This is research that's been carried out back in the 80s, particularly by a group in Berkeley, Judith Klinman. Other groups in the UK have now also confirmed that enzymes really do this.
Research carried out by my group -- so as I mentioned, I'm a nuclear physicist, but I've realized I've got these tools of using quantum mechanics in atomic nuclei, and so can apply those tools in other areas as well. One question we asked is whether quantum tunneling plays a role in mutations in DNA. Again, this is not a new idea; it goes all the way back to the early 60s. The two strands of DNA, the double-helix structure, are held together by rungs; it's like a twisted ladder. And those rungs of the ladder are hydrogen bonds -- protons, that act as the glue between the two strands. So if you zoom in, what they're doing is holding these large molecules -- nucleotides -- together. Zoom in a bit more. So, this a computer simulation. The two white balls in the middle are protons, and you can see that it's a double hydrogen bond. One prefers to sit on one side; the other, on the other side of the two strands of the vertical lines going down, which you can't see. It can happen that these two protons can hop over. Watch the two white balls. They can jump over to the other side. If the two strands of DNA then separate, leading to the process of replication, and the two protons are in the wrong positions, this can lead to a mutation.
This has been known for half a century. The question is: How likely are they to do that, and if they do, how do they do it? Do they jump across, like the ball going over the wall? Or can they quantum-tunnel across, even if they don't have enough energy? Early indications suggest that quantum tunneling can play a role here. We still don't know yet how important it is; this is still an open question. It's speculative, but it's one of those questions that is so important that if quantum mechanics plays a role in mutations, surely this must have big implications, to understand certain types of mutations, possibly even those that lead to turning a cell cancerous.
Another example of quantum mechanics in biology is quantum coherence, in one of the most important processes in biology, photosynthesis: plants and bacteria taking sunlight, and using that energy to create biomass. Quantum coherence is the idea of quantum entities multitasking. It's the quantum skier. It's an object that behaves like a wave, so that it doesn't just move in one direction or the other, but can follow multiple pathways at the same time.
Some years ago, the world of science was shocked when a paper was published showing experimental evidence that quantum coherence takes place inside bacteria, carrying out photosynthesis. The idea is that the photon, the particle of light, the sunlight, the quantum of light captured by a chlorophyll molecule, is then delivered to what's called the reaction center, where it can be turned into chemical energy. And in getting there, it doesn't just follow one route; it follows multiple pathways at once, to optimize the most efficient way of reaching the reaction center without dissipating as waste heat. Quantum coherence taking place inside a living cell. A remarkable idea, and yet evidence is growing almost weekly, with new papers coming out, confirming that this does indeed take place.
My third and final example is the most beautiful, wonderful idea. It's also still very speculative, but I have to share it with you. The European robin migrates from Scandinavia down to the Mediterranean, every autumn, and like a lot of other marine animals and even insects, they navigate by sensing the Earth's magnetic field. Now, the Earth's magnetic field is very, very weak; it's 100 times weaker than a fridge magnet, and yet it affects the chemistry -- somehow -- within a living organism. That's not in doubt -- a German couple of ornithologists, Wolfgang and Roswitha Wiltschko, in the 1970s, confirmed that indeed, the robin does find its way by somehow sensing the Earth's magnetic field, to give it directional information -- a built-in compass.
The puzzle, the mystery was: How does it do it? Well, the only theory in town -- we don't know if it's the correct theory, but the only theory in town -- is that it does it via something called quantum entanglement. Inside the robin's retina -- I kid you not -- inside the robin's retina is a protein called cryptochrome, which is light-sensitive. Within cryptochrome, a pair of electrons are quantum-entangled. Now, quantum entanglement is when two particles are far apart, and yet somehow remain in contact with each other. Even Einstein hated this idea; he called it "spooky action at a distance."
So if Einstein doesn't like it, then we can all be uncomfortable with it. Two quantum-entangled electrons within a single molecule dance a delicate dance that is very sensitive to the direction the bird flies in the Earth's magnetic field.
We don't know if it's the correct explanation, but wow, wouldn't it be exciting if quantum mechanics helps birds navigate? Quantum biology is still in it infancy. It's still speculative. But I believe it's built on solid science. I also think that in the coming decade or so, we're going to start to see that actually, it pervades life -- that life has evolved tricks that utilize the quantum world. Watch this space.
Thank you.
(Applause)
我想給大家介紹一個(gè)新興的科學(xué)領(lǐng)域, 這個(gè)領(lǐng)域還處在理論階段,但也很激動(dòng)人心, 當(dāng)然目前發(fā)展也很迅猛。 量子生物學(xué)提出了一個(gè)非常簡(jiǎn)單的問(wèn)題: 量子力學(xué)—— 這是個(gè)關(guān)于原子和分子的亞原子世界理論, 一個(gè)既神秘又奇妙還很強(qiáng)大的理論, 也是支撐著現(xiàn)代物理學(xué)和化學(xué)的理論—— 那它是否也在活體細(xì)胞里起著重要作用呢? 換句話說(shuō):在生物體當(dāng)中, 是否有一些過(guò)程、生理反應(yīng)、現(xiàn)象, 是只能借助量子力學(xué)來(lái)解釋的呢? 其實(shí)量子生物學(xué)也不算新學(xué)科; 它的歷史可追溯至20世紀(jì)30年代。 但是直到十年前左右,才有了周密的實(shí)驗(yàn)—— 就是在生化實(shí)驗(yàn)室,利用光譜儀來(lái)做的實(shí)驗(yàn)—— 結(jié)果給出了非常明確有力的證據(jù),說(shuō)明確實(shí)有某些生理反應(yīng) 需要通過(guò)量子力學(xué)來(lái)解釋。
量子生物學(xué)集合了物理學(xué)家、生化學(xué)家 和分子生物學(xué)家——是一個(gè)極其跨學(xué)科的領(lǐng)域。 我來(lái)自量子物理學(xué)領(lǐng)域,是個(gè)核物理學(xué)家。
我花了三十多年的時(shí)間 來(lái)試圖理解量子力學(xué)。 Niels Bohr,量子力學(xué)之父之一, 說(shuō)過(guò),誰(shuí)要是第一次聽(tīng)到量子理論時(shí)沒(méi)有感到震驚,那他一定沒(méi)聽(tīng)懂。 我還蠻慶幸自己現(xiàn)在還挺震驚的。 這是個(gè)好事。 這是個(gè)好但這也說(shuō)明我研究的只是這個(gè)宇宙最小的結(jié)構(gòu), 這個(gè)建立現(xiàn)實(shí)世界的一磚一瓦。 要想知道這個(gè)結(jié)構(gòu)的大小, 那么我們從網(wǎng)球這種日常物品開(kāi)始吧, 然后將物體按大小將序排列—— 從針眼,到細(xì)胞,到細(xì)菌,再到酶—— 最后才到納米世界。
你們也許都聽(tīng)過(guò)納米技術(shù)這個(gè)詞。 一納米就是十億分之一米。 我的研究領(lǐng)域是原子核,也就是原子當(dāng)中的那小個(gè)點(diǎn)。 它體積比這更小。 這就是量子力學(xué)的領(lǐng)域, 而物理學(xué)家和化學(xué)家花了很長(zhǎng)的時(shí)間 來(lái)努力適應(yīng)這個(gè)領(lǐng)域。 而生物學(xué)家,在我看來(lái),很輕松就避開(kāi)了它。 他們很滿足于這些分子球棍模型。
(笑聲)
這球指的是原子,棍負(fù)責(zé)把原子連在一起。 如果在實(shí)驗(yàn)室里無(wú)法建立起實(shí)體的分子模型, 現(xiàn)在,他們也可以用強(qiáng)大的電腦 來(lái)建立模擬的巨大分子模型。 這個(gè)蛋白質(zhì)由100,000個(gè)原子組成。 這不怎么需要量子力學(xué)來(lái)解釋。 量子力學(xué)從上世紀(jì)20年代開(kāi)始發(fā)展。 這是一套美麗而又強(qiáng)大的數(shù)學(xué)法則和理念, 幫人們理解這個(gè)世界最小的結(jié)構(gòu)。 這是個(gè)和我們?nèi)粘I詈懿灰粯拥氖澜纾?/a> 它由數(shù)萬(wàn)億個(gè)原子組成。 這是個(gè)建立在機(jī)率和概率之上的世界。 是個(gè)模糊的世界。 是個(gè)幽靈的世界, 在這里,粒子們也可表現(xiàn)出散開(kāi)的波狀形態(tài)。
如果我們把量子力學(xué)或量子物理學(xué)想象成 現(xiàn)實(shí)世界的最根本基礎(chǔ),那么, 量子物理學(xué)支撐了有機(jī)化學(xué), 這種說(shuō)法就不足為奇了。 畢竟,它有一套原則, 解釋了原子如何組合在一起,從而建立起一個(gè)有機(jī)分子。 有機(jī)化學(xué),隨著復(fù)雜度的增加, 又建立了分子生物學(xué),而它又將我們帶入生命科學(xué)。 所以,從某個(gè)角度來(lái)說(shuō),這不足為奇。 這算是雞毛蒜皮了。 你會(huì)說(shuō),“嗯,生命當(dāng)然最終要靠量子力學(xué)來(lái)解釋。” 但此外的一切也都是如此。 所有無(wú)機(jī)物,也都是由數(shù)萬(wàn)億個(gè)原子組成的。
最后,我們得在量子的層面上 來(lái)探究這領(lǐng)域的神秘之處。 但在日常生活中,我們會(huì)忘記它的神秘感。 因?yàn)?,?dāng)數(shù)萬(wàn)億個(gè)原子聚集在一起時(shí), 量子的神秘感就消失了。 量子生物學(xué)說(shuō)的不是這個(gè)。 量子生物學(xué)沒(méi)這么淺顯。 當(dāng)然,量子力學(xué)在分子水平上支撐著生命。 量子生物學(xué)旨在尋找重要的東西—— 量子力學(xué)當(dāng)中的反直覺(jué)觀念—— 然后了解它們是否會(huì)在 描述生命進(jìn)程中起到重要的作用。
我有一個(gè)完美的例子來(lái)解釋 量子世界的反直覺(jué)觀念。 這是個(gè)量子滑雪者。 他看起來(lái)很完整,看起來(lái)很健康, 但是,他也好像同時(shí)穿過(guò)了那棵樹(shù)的兩邊。 嗯,當(dāng)然,如果你看到這樣的滑雪軌跡, 你可能會(huì)覺(jué)得這是某種特技。 但在量子世界里,這無(wú)時(shí)不刻都會(huì)發(fā)生。 粒子是可以進(jìn)行多任務(wù)處理的,它們可以同時(shí)出現(xiàn)在兩個(gè)地方。 它們?cè)谕粫r(shí)間能執(zhí)行多項(xiàng)任務(wù)。 它們好像散開(kāi)的漣漪一樣。 就好比魔術(shù)。
物理學(xué)家和化學(xué)家用了近一個(gè)世紀(jì) 來(lái)適應(yīng)這種神秘之物。 我也不怪生物學(xué)家 不用或不想學(xué)習(xí)量子力學(xué)。
你們看,這種神秘是很微妙的; 我們物理學(xué)家在實(shí)驗(yàn)室里下了很大功夫來(lái)穩(wěn)定它。 我們把我們的系統(tǒng)冷卻到接近絕對(duì)零度, 在真空中進(jìn)行我們的實(shí)驗(yàn), 我們努力將其從任何外界干擾中分離出來(lái)。 那和活體細(xì)胞里溫暖、凌亂又嘈雜的環(huán)境大相徑庭。 生物學(xué),就分子生物學(xué)而言 ,它似乎在化學(xué)——化學(xué)反應(yīng)方面 非常好地闡釋了所有的生命進(jìn)程。 而這都是還原論、確定性的化學(xué)反應(yīng), 它們顯示,生命的成分說(shuō)到底和其他事物一樣, 而且我們要是可以在宏觀世界里忘掉量子力學(xué), 那我們也可以在生物學(xué)中忘掉它。
然而,有個(gè)人不同意這個(gè)觀點(diǎn)。 那就是埃爾溫·薛定諤,他有個(gè)著名的薛定諤貓實(shí)驗(yàn), 是個(gè)奧地利物理學(xué)家。 他是20世紀(jì)20年代量子力學(xué)創(chuàng)始人之一。 1944年,他寫了本書叫做《生命是什么?》 這本書影響巨大。 它影響了弗朗西斯·克里克和詹姆斯·沃森, 就是發(fā)現(xiàn)DNA雙螺旋結(jié)構(gòu)的那兩個(gè)人。 在書中,他表達(dá)了這樣的意思: 在分子水平上,生命體有著某種秩序, 一種結(jié)構(gòu),使其和其他隨機(jī)的熱力學(xué)原子沖撞 以及一樣復(fù)雜的無(wú)機(jī)質(zhì)分子 有著天壤之別。
實(shí)際上,生命體似乎就是在一個(gè)結(jié)構(gòu)中,以這種秩序運(yùn)轉(zhuǎn)著, 就好像被冷卻到近絕對(duì)零度的無(wú)機(jī)質(zhì)一樣, 量子理論在這里起到了很重要的作用。 活體細(xì)胞中的這個(gè)結(jié)構(gòu)——這個(gè)秩序—— 有著一些特別之處。 所以,薛定諤推測(cè),也許量子力學(xué)在生命學(xué)當(dāng)中起到了某些作用。 這是個(gè)極具推測(cè)性的且影響深遠(yuǎn)的觀點(diǎn), 但也沒(méi)怎么發(fā)展下去了。
但正如我一開(kāi)始說(shuō)的, 在過(guò)去10年做了些實(shí)驗(yàn), 實(shí)驗(yàn)結(jié)果顯示生物學(xué)中的某些現(xiàn)象 確實(shí)需要量子力學(xué)來(lái)解釋。
我想和大家分享幾個(gè)最激動(dòng)人心的實(shí)驗(yàn)。 這是量子世界里最有名的現(xiàn)象之一, 叫做量子隧穿。 左邊的框里有一個(gè)量子實(shí)體,它像波一樣擴(kuò)散開(kāi)來(lái)—— 這是個(gè)像電子一樣的粒子, 它和從墻上反彈回來(lái)的小球不一樣。 它是一個(gè)波,可以穿過(guò) 一個(gè)實(shí)心墻,像個(gè)幽靈似地從一邊穿透到另一邊。 你在右手邊的框里可以看到一些微弱的光斑。 量子隧穿表明,一個(gè)粒子能夠撞上一堵無(wú)法穿透的墻, 然而卻又能像魔術(shù)一樣, 從墻的一側(cè)消失并出現(xiàn)在另一側(cè)。 用最好的方法來(lái)解釋的話,就是說(shuō)如果你要把一個(gè)球扔到墻的另一側(cè), 那你要給它足夠能量讓它越過(guò)墻頂。 但在量子世界里,你不需要將它從墻頂上扔過(guò)去, 你只要往墻上扔就好了,然后這個(gè)球會(huì)在你這側(cè)消失并出現(xiàn)在另一側(cè), 而這個(gè)概率為非零。
這不是推測(cè),順便提下。 我們很高興——額,“高興”這個(gè)詞用得不對(duì)——
我們是熟悉這個(gè)的。
量子隧穿隨時(shí)隨刻都在發(fā)生; 實(shí)際上,這也是太陽(yáng)發(fā)光的原因。 粒子融合在一起, 然后太陽(yáng)通過(guò)量子隧穿將氫轉(zhuǎn)化為氦。 七八十年代的時(shí)候,人們發(fā)現(xiàn)活細(xì)胞中 也有量子隧穿。 酶,為維持生命努力運(yùn)作著,是化學(xué)反應(yīng)的催化劑—— 酶這種生物分子加快了活細(xì)胞中的化學(xué)反應(yīng), 規(guī)模大小不一。 但它們是如何做到這點(diǎn)的,至今任是一個(gè)謎。
嗯,人們發(fā)現(xiàn) 酶發(fā)展出了一種方法, 就是通過(guò)傳送亞原子粒子,例如電子和當(dāng)然還有質(zhì)子這種, 酶通過(guò)量子隧穿將它們從分子的一部分傳輸?shù)搅硪徊糠帧?/a> 這效率非常高,很快,它—— 一個(gè)質(zhì)子能從一個(gè)地方消失,然后在另一個(gè)地方再出現(xiàn)。 而酶使之成為可能。
這個(gè)研究是在80年代進(jìn)行的, 其中Judith Klinman帶領(lǐng)的一個(gè)伯克利的團(tuán)隊(duì)作用尤其突出。 另一些英國(guó)的團(tuán)隊(duì)現(xiàn)在也已肯定 酶有這種能力。
我的團(tuán)隊(duì)做的研究—— 我之前說(shuō)過(guò),我是個(gè)核物理學(xué)家, 但我也意識(shí)到,我已在原子核領(lǐng)域應(yīng)用了量子力學(xué), 那么我也可以把它也應(yīng)用到其他領(lǐng)域。 我們提出的一個(gè)問(wèn)題是 量子隧穿在DNA變異中是否也發(fā)揮著作用。 這仍然不是個(gè)新概念;它任然要追溯到60年代早期。 DNA分子鏈,即雙螺旋結(jié)構(gòu), 是由像階梯一樣的東西連接在一起的;像是個(gè)扭曲的梯子一樣。 而這些梯子上的階梯就是氫鍵—— 質(zhì)子,其作用是將兩束分子鏈黏合在一起。 那么放大來(lái)看,你就會(huì)發(fā)現(xiàn)它們將這些大分子—— 核苷酸——聚合在一起。 再放大一點(diǎn)看: 這是個(gè)電腦模擬。 中間的兩個(gè)白色的球是質(zhì)子, 你們看得到這是雙氫鍵。 其中一個(gè)喜歡待在這端;另一個(gè),則待在雙鏈的另一端, 這是縱向走向的,你們看不到。 這兩個(gè)質(zhì)子也有可能跳到另一端。 看著兩個(gè)白球。 它們可以跳到另外一端。 如果DNA雙鏈分開(kāi)了,引發(fā)復(fù)制過(guò)程, 而恰好這兩個(gè)質(zhì)子的位置錯(cuò)了, 那么就會(huì)導(dǎo)致變異。
這個(gè)現(xiàn)象已為人所知半個(gè)世紀(jì)了。 但問(wèn)題來(lái)了:它們發(fā)生錯(cuò)誤的概率是多大, 如果它們出錯(cuò)了,又是怎么出錯(cuò)的呢? 它們就這樣跳到另一端,就好像那個(gè)球越過(guò)那堵墻那樣嗎? 還是它們?cè)跊](méi)有足夠能量的情況下,也能實(shí)現(xiàn)量子隧穿那樣的穿越呢? 早期研究提出量子隧穿可能在這發(fā)揮了作用。 我們還不知道其重要性有多大; 目前還沒(méi)有確切答案。 現(xiàn)在只有推測(cè), 但如果說(shuō)量子力學(xué)會(huì)影響變異的話, 這就是個(gè)非常重要的問(wèn)題之一了, 對(duì)于理解某些類型的變異, 甚至是可能導(dǎo)致細(xì)胞癌變的變異, 這當(dāng)然這有著非常重大的意義。
生物學(xué)中另一個(gè)量子力學(xué)的例子是, 生物學(xué)中最重要的一個(gè)過(guò)程之一, 光合作用里的量子相干性:植物和細(xì)菌吸收了光照, 并利用其中的能量來(lái)制造生物質(zhì)。 量子相關(guān)性指的是量子實(shí)體同時(shí)執(zhí)行多任務(wù)的現(xiàn)象。 這是個(gè)量子滑雪者。 這個(gè)物體表現(xiàn)得像波一樣, 所以它的移動(dòng)不是單一方向的, 而是同時(shí)能夠走不同的路線。
幾年前,一篇論文的發(fā)布震驚了科學(xué)界, 它提出實(shí)驗(yàn)證明量子相干性 存在于細(xì)菌中, 執(zhí)行著光合作用。 這個(gè)觀點(diǎn)說(shuō)的是,光子,即光粒子,陽(yáng)光, 光量子被葉綠素捕捉到后, 被傳遞到叫做反應(yīng)中心的地方, 在這里它被轉(zhuǎn)化成化學(xué)能量。 而到達(dá)反應(yīng)中心的路線不止一個(gè); 光量子會(huì)同時(shí)走多個(gè)路線, 最后找出最高效的路線達(dá)到反應(yīng)中心, 從而不會(huì)消耗成余熱。 量子相干性效應(yīng)也存在于活細(xì)胞里。 這是個(gè)卓越的觀點(diǎn), 而目前每周也都有新證據(jù)、新論文發(fā)表來(lái)證明這個(gè)觀點(diǎn), 證明這個(gè)現(xiàn)象的確存在。
我的第三個(gè)也是最后一個(gè)例子,是個(gè)非常美麗奇妙的觀點(diǎn)。 同樣也極具推測(cè)性,但我要和你們分享一下。 歐洲斯堪的納維亞的知更鳥(niǎo) 每個(gè)秋天都會(huì)遷徙到地中海, 就和許多其它海洋動(dòng)物甚至是昆蟲(chóng)一樣, 它們都靠感應(yīng)地球磁場(chǎng)來(lái)感知方向。 地球磁場(chǎng)非常的弱; 它比我們的冰箱貼還弱100倍, 然而它卻影響著生物體中的化學(xué)反應(yīng)。 毋庸置疑——德國(guó)的鳥(niǎo)類學(xué)家夫婦 Wolfgang和Roswitha Wiltschko在20世紀(jì)70年代確認(rèn), 知更鳥(niǎo)的確通過(guò)感應(yīng)地球磁場(chǎng)來(lái)探路, 從中獲取方向信息——這是一種內(nèi)置的指南針。
令人不解的謎團(tuán)是:它們是怎么做到的? 嗯,我們現(xiàn)在只有一個(gè)理論-- 我們不確定這個(gè)理論是否正確,但目前只有這么一個(gè)理論-- 就是,它們是通過(guò)一個(gè)叫做量子糾纏的效應(yīng)來(lái)實(shí)現(xiàn)導(dǎo)航的。 在知更鳥(niǎo)的視網(wǎng)膜里-- 我可不是開(kāi)玩笑啊--在知更鳥(niǎo)的視網(wǎng)膜上有一個(gè)蛋白質(zhì) 叫做隱花色素,它對(duì)光很敏感。 在印花色素里,有一對(duì)相互糾纏的電子。 量子糾纏意味著兩個(gè)粒子相距甚遠(yuǎn), 卻又能彼此保持聯(lián)系。 連愛(ài)因斯坦都討厭這個(gè)觀點(diǎn); 他把它叫做“鬼魅般的超距作用?!?/a>
那么如果愛(ài)因斯坦不喜歡這個(gè)觀點(diǎn),那么我們就有理由也不喜歡。 單細(xì)胞當(dāng)中的兩個(gè)有著量子糾纏關(guān)系的電子 跳著非常微妙的舞蹈, 并對(duì)鳥(niǎo)類在地球磁場(chǎng)里 飛翔的方向很敏感。
我不知道這么說(shuō)對(duì)不對(duì), 但是哇哦,如果量子力學(xué)能幫助鳥(niǎo)類感知方向,這不是很激動(dòng)人心的事嗎? 量子生物學(xué)還處在嬰兒時(shí)期。 還處在推測(cè)階段。 不過(guò)我相信它是建立在嚴(yán)謹(jǐn)科學(xué)之上的。 我也認(rèn)為在接下來(lái)十年左右, 我們會(huì)看到,其實(shí)它在生活中無(wú)處不在—— 生活已經(jīng)演變出了許多利用量子世界的技能。 請(qǐng)關(guān)注這個(gè)領(lǐng)域。
謝謝。
(掌聲)
來(lái)自: kevingiao > 《Ted》
0條評(píng)論
發(fā)表
請(qǐng)遵守用戶 評(píng)論公約
優(yōu)秀作業(yè) | 量子力學(xué)發(fā)展初期的故事
One was Edward Condon.I’m coming to the end of my talk, and I just want to tell you one more small story. I could go on tellin...
量子生物學(xué)的定義
quantum biology 有以下定義:現(xiàn)代生物學(xué)已將生物的各種生活過(guò)程歸結(jié)到細(xì)胞水平,為了解擔(dān)負(fù)這些過(guò)程的物質(zhì)群,而從這些物質(zhì)的相互作用、相互轉(zhuǎn)化等方面去闡明各種生活過(guò)程的本質(zhì)。這樣對(duì)生物體的物質(zhì)...
量子力學(xué)也能如此交叉?
看完上面這些標(biāo)題,那天跟睡討論想想自己的題目是不是可以叫the pride and prejudice of quantum mechanics,量子力學(xué)的傲慢與偏見(jiàn),或者是the sense and sensibility of quantum mechanics量子力學(xué)中...
時(shí)間簡(jiǎn)史04|不確定性原理(中英文)
However, one will not be able to determine the position of the particle more accurately than the distance between the wave cres...
諾貝爾物理學(xué)獎(jiǎng)(2022)公布
北京時(shí)間10月4日下午5點(diǎn)49分許,瑞典皇家科學(xué)院決定將2022年的諾貝爾物理學(xué)獎(jiǎng)授予法國(guó)科學(xué)家Alain Aspect、美國(guó)科學(xué)家John F.Clauser和...
科學(xué)100秒:量子引力是什么?
科學(xué)100秒:量子引力是什么?So the two pillars of 20th century physics are quantum theory and Einstein''s theory of general relativity.It is anticipated that these issues cannot be...
量子力學(xué)(Quantum Mechanics)的發(fā)展簡(jiǎn)史
量子力學(xué)(Quantum Mechanics)的發(fā)展簡(jiǎn)史。量子力學(xué)(Quantum Mechanics),它是研究物質(zhì)世界微觀粒子的運(yùn)動(dòng)規(guī)律的物理學(xué)分支學(xué)科,它...
量子力學(xué)和物質(zhì)波
能量量子化觀念建立以后,考慮到光子和實(shí)物粒子的類比,1923年9月到10月間,德布羅意在《法國(guó)科學(xué)院通報(bào)》上先后發(fā)表了分別題為《輻射——波與量子》、《光學(xué)——光量子、衍射和干涉》、《量子、氣體分...
什么是量子力學(xué)?| 曹則賢
關(guān)鍵詞 (能量、作用量、相空間)量子,量子化,黑體輻射,光譜線,玻爾模型,躍遷,量子化條件,矩陣力學(xué),波動(dòng)力學(xué),波函數(shù),量子數(shù),自...
微信掃碼,在手機(jī)上查看選中內(nèi)容