這是奉獻(xiàn)給中考備考師生的“武功秘籍”,破繭成蝶,橫空出世。這是凝聚了數(shù)學(xué)解題愛(ài)好者心血的“寶典”,中考各類題型和方法。一共分七講,每一講又分干類型題,旨在一舉拿下與線段有關(guān)的問(wèn)題。 目錄1 目錄2 線段最值問(wèn)題幾何最值問(wèn)題是初中數(shù)學(xué)中最具有探索性、挑戰(zhàn)性的問(wèn)題,在考試中多以壓軸題呈現(xiàn),雖然它的理論根據(jù)非常簡(jiǎn)單,但涉及的知識(shí)較為寬泛,方法靈活多變,對(duì)學(xué)生的數(shù)學(xué)想象、建模、轉(zhuǎn)化、創(chuàng)新等能力要求特別高,綜合性極強(qiáng),故多數(shù)情況下難度極大。 初中階段的最值問(wèn)題分為代數(shù)、幾何兩大類。 幾何類別:一是線段公理,即兩點(diǎn)之間線段最短,展開(kāi)細(xì)分還包括了三角形三邊關(guān)系、圓外(內(nèi))一點(diǎn)到圓周上一動(dòng)點(diǎn)的最值、圓內(nèi)最長(zhǎng)的弦(即直徑),大邊對(duì)大角等;二是垂線段公理,即連接直線外一點(diǎn)與直線上各點(diǎn)的線段中垂線段最短(以下簡(jiǎn)稱“垂線段最短”),如斜邊不小于直角邊等。 代數(shù)類別:一是函數(shù),即變量影響變量,比較常見(jiàn)的有二次函數(shù)求最值,或者銳角三角函數(shù)(如夾角最大問(wèn)題);二是不等式,如利用均值不等式確定取值范圍。 解決最值問(wèn)題的關(guān)鍵在于轉(zhuǎn)化,利用全等、相似、勾股定理、三角函數(shù)、等面積法等進(jìn)行轉(zhuǎn)換,最終將問(wèn)題中的最值轉(zhuǎn)化成上述兩大類問(wèn)題,再根據(jù)具體情況向小類別去探索。例如“將軍飲馬問(wèn)題”可通過(guò)對(duì)稱轉(zhuǎn)化為兩點(diǎn)之間線段最短問(wèn)題;“胡不歸問(wèn)題”可利用系數(shù)構(gòu)造一個(gè)特殊直角三角形,將問(wèn)題轉(zhuǎn)化為垂線段最短問(wèn)題;“費(fèi)馬點(diǎn)問(wèn)題”可通過(guò)旋轉(zhuǎn)將三線段之和的最值問(wèn)題轉(zhuǎn)化為兩點(diǎn)之間線段最短問(wèn)題;“阿波羅尼斯圓問(wèn)題”可通過(guò)構(gòu)造母子相似轉(zhuǎn)化為兩點(diǎn)之間線段最短問(wèn)題,我們需要去思考和探索知識(shí)點(diǎn)的本質(zhì),不要被形形色色的名稱嚇倒。 本講對(duì)初中數(shù)學(xué)常見(jiàn)的平面幾何最值問(wèn)題進(jìn)行分類解析,以幾何為主,代數(shù)為輔,以期幫助讀者找到解決最值問(wèn)題的規(guī)律與捷徑。 |
|