接著1.最新: 2024版異質性穩(wěn)健DID最全指南! 更新太快腦袋跟不上看這里!2.不炒冷飯! 2024年最新“2”份DID使用檢查清單, 前沿DID使用基本規(guī)范指南! 今天展示一個在一張圖里畫出5種異質性穩(wěn)健DID方法的平行趨勢與動態(tài)效應的完整code和示例。 該示例將指導你如何在單張圖表中繪制五種不同估計方法下的異質性穩(wěn)健雙重差分估計值(DID)。不僅展示了事前平行趨勢,還揭示了動態(tài)效應的演變過程??梢灾庇^地觀察不同處理組在政策或事件影響前后的變化趨勢,從而更準確地評估政策或事件的因果效應。 關于平行趨勢,1.平行趨勢檢驗, 事件研究圖繪制, 安慰劑檢驗的保姆級程序指南!2.標準DID中的平行趨勢檢驗,動態(tài)效應, 安慰劑檢驗, 預期效應教程,3.平行趨勢通不過, 該采取什么方法來更好地滿足平行趨勢呢?4.平行趨勢的敏感性檢驗, 結果能容忍違反多大程度的平行趨勢,5.某經(jīng)濟學權威刊物上平行趨勢怎么這樣, 真給我看迷糊了! 到底如何對pre-trend檢測, 討論和處理呢?6.在平行趨勢檢驗中對政策前后系列年份進行縮尾處理?7.三重差分DDD估計中平行趨勢檢驗如何操作呢?8.2篇TOP5: 當前平行趨勢檢驗方法有問題,新的平行趨勢檢驗方法已經(jīng)出現(xiàn),9.前沿: 平行趨勢沒有通過卻成功發(fā)在了AER上!10.只有4期數(shù)據(jù), 為啥平行趨勢檢驗時有6期呢? DID與連續(xù)變量交互系數(shù)如何解釋? 11.歷史上首篇DID中修改平行趨勢而被撤稿的TOP5文章! 直接通過一個程序在一張圖里畫出5種異質性穩(wěn)健DID的平行趨勢和政策動態(tài)效應。本文通過一系列方法的模擬示例,向讀者展示了如何估計事件研究中的因果效應。同時,介紹了如何利用event_plot 命令繪制系數(shù)及其置信區(qū)間,以直觀展示研究結果。在進行執(zhí)行代碼之前,需要準備以下統(tǒng)計命令:did_imputation (Borusyak等,2021):可通過SSC平臺獲取。did_multiplegt (de Chaisemartin和D'Haultfoeuille,2020):同樣可在SSC平臺下載。eventstudyinteract (San和Abraham,2020):SSC上也有提供。csdid (Callaway和Sant'Anna,2020):SSC平臺亦可下載。 下面的代碼是上圖完整的示例code,里面包括了自己模擬的數(shù)據(jù),因此可以完整運行下來。 // 生成模擬數(shù)據(jù),Generate a complete panel of 300 units observed in 15 periodsgen i = int((_n-1)/$T )+1 // unit idgen t = mod((_n-1),$T )+1 // calendar period// Randomly generate treatment rollout years uniformly across Ei=10..16 (note that periods t>=16 would not be useful since all units are treated by then)gen Ei = ceil(runiform()*7)+$T -6 if t==1 // year when unit is first treatedbys i (t): replace Ei = Ei[1]gen K = t-Ei // "relative time", i.e. the number periods since treated (could be missing if never-treated)gen D = K>=0 & Ei!=. // treatment indicator// Generate the outcome with parallel trends and heterogeneous treatment effectsgen tau = cond(D==1, (t-12.5), 0) // heterogeneous treatment effects (in this case vary over calendar periods)gen eps = rnormal() // error termgen Y = i + 3*t + tau*D + eps // the outcome (FEs play no role since all methods control for them)//save five_estimators_data, replace// did_imputation估計,Estimation with did_imputation of Borusyak et al. (2021)did_imputation Y i t Ei, allhorizons pretrend(5)event_plot, default_look graph_opt(xtitle("Periods since the event") ytitle("Average causal effect") ///title("Borusyak et al. (2021) imputation estimator") xlabel(-5(1)5))estimates store bjs // storing the estimates for later// Estimation with did_multiplegt of de Chaisemartin and D'Haultfoeuille (2020)did_multiplegt Y i t D, robust_dynamic dynamic(5) placebo(5) breps(100) cluster(i) event_plot e(estimates)#e(variances), default_look graph_opt(xtitle("Periods since the event") ytitle("Average causal effect") ///title("de Chaisemartin and D'Haultfoeuille (2020)") xlabel(-5(1)5)) stub_lag(Effect_#) stub_lead(Placebo_#) togethermatrix dcdh_b = e(estimates) // storing the estimates for latermatrix dcdh_v = e(variances)// csdid估計, Estimation with csdid of Callaway and Sant'Anna (2020)gen gvar = cond(Ei==., 0, Ei) // group variable as required for the csdid commandcsdid Y, ivar(i) time(t) gvar(gvar) notyetestat event, estore(cs) // this produces and stores the estimates at the same timeevent_plot cs, default_look graph_opt(xtitle("Periods since the event") ytitle("Average causal effect") xlabel(-14(1)5) ///title("Callaway and Sant'Anna (2020)")) stub_lag(Tp#) stub_lead(Tm#) together// eventstudyinteract估計,Estimation with eventstudyinteract of Sun and Abraham (2020)gen lastcohort = Ei==r(max) // dummy for the latest- or never-treated cohortdrop F1event // normalize K=-1 (and also K=-15) to zeroeventstudyinteract Y L*event F*event, vce(cluster i) absorb(i t) cohort(Ei) control_cohort(lastcohort)event_plot e(b_iw)#e(V_iw), default_look graph_opt(xtitle("Periods since the event") ytitle("Average causal effect") xlabel(-14(1)5) ///title("Sun and Abraham (2020)")) stub_lag(L#event) stub_lead(F#event) togethermatrix sa_b = e(b_iw) // storing the estimates for later// TWFE估計,TWFE OLS estimation (which is correct here because of treatment effect homogeneity). Some groups could be binned.reghdfe Y F*event L*event, a(i t) cluster(i)event_plot, default_look stub_lag(L#event) stub_lead(F#event) together graph_opt(xtitle("Days since the event") ytitle("OLS coefficients") xlabel(-14(1)5) ///estimates store ols // saving the estimates for later// Construct the vector of true average treatment effects by the number of periods since treatmentmatrix colnames btrue = tau0 tau1 tau2 tau3 tau4 tau5matrix btrue[1,`h'+1]=r(mean)// 一張圖里展示所有估計值的事前趨勢與事后動態(tài)效應,Combine all plots using the stored estimates// Combine all plots using the stored estimatesevent_plot btrue# bjs dcdh_b#dcdh_v cs sa_b#sa_v ols, ///stub_lag(tau# tau# Effect_# Tp# L#event L#event) stub_lead(pre# pre# Placebo_# Tm# F#event F#event) plottype(scatter) ciplottype(rcap) ///together perturb(-0.325(0.13)0.325) trimlead(5) noautolegend ///graph_opt(title("Event study estimators in a simulated panel (300 units, 15 periods)", size(medlarge)) ///xtitle("Periods since the event") ytitle("Average causal effect") xlabel(-5(1)5) ylabel(0(1)3) ///legend(order(1 "True value" 2 "Borusyak et al." 4 "de Chaisemartin-D'Haultfoeuille" ///6 "Callaway-Sant'Anna" 8 "Sun-Abraham" 10 "OLS") rows(3) region(style(none))) ////// the following lines replace default_look with something more elaboratexline(-0.5, lcolor(gs8) lpattern(dash)) yline(0, lcolor(gs8)) graphregion(color(white)) bgcolor(white) ylabel(, angle(horizontal)) ///lag_opt1(msymbol(+) color(cranberry)) lag_ci_opt1(color(cranberry)) ///lag_opt2(msymbol(O) color(cranberry)) lag_ci_opt2(color(cranberry)) ///lag_opt3(msymbol(Dh) color(navy)) lag_ci_opt3(color(navy)) ///lag_opt4(msymbol(Th) color(forest_green)) lag_ci_opt4(color(forest_green)) ///lag_opt5(msymbol(Sh) color(dkorange)) lag_ci_opt5(color(dkorange)) ///lag_opt6(msymbol(Oh) color(purple)) lag_ci_opt6(color(purple)) graph export "five_estimators_example.png", replace 關于多期DID或交疊DID: 1.DID相關前沿問題“政策交錯執(zhí)行+堆疊DID+事件研究”, 附完整slides,2.交錯(漸進)DID中, 用TWFE估計處理效應的問題, 及Bacon分解識別估計偏誤,3.典范! 這篇AER在一圖表里用了所有DID最新進展方法, 審稿人直接服了!4.最新Sun和Abraham(2020)和TWFE估計多期或交錯DID并繪圖展示結果!詳細解讀code!5.多期DID或漸進DID或交疊DID, 最新Stata執(zhí)行命令整理如下供大家學習,6.多期DID前沿方法大討論, e.g., 進入-退出型DID, 異質性和動態(tài)性處理效應DID, 基期選擇問題等,7.交疊DID中平行趨勢檢驗, 事件研究圖繪制, 安慰劑檢驗的保姆級程序指南!8.欣慰! 營養(yǎng)午餐計劃終于登上TOP5! 交疊DID+異質性穩(wěn)健DID!9.用事件研究法開展政策評估的過程, 手把手教學文章!10.從雙重差分法到事件研究法, 雙重差分濫用與需要注意的問題,11.系統(tǒng)梳理DID最新進展: 從多期DID的潛在問題到當前主流解決方法和代碼! 12.標準DID中的平行趨勢檢驗,動態(tài)效應, 安慰劑檢驗, 預期效應教程,13.DID從經(jīng)典到前沿方法的保姆級教程, 釋放最完整數(shù)據(jù)和代碼! 下面這些短鏈接文章屬于合集,可以收藏起來閱讀,不然以后都找不到了。
7年,計量經(jīng)濟圈近2000篇不重類計量文章, 可直接在公眾號菜單欄搜索任何計量相關問題,
Econometrics Circle
|