效果
模型
Inputs
-------------------------
name:data
tensor:Float[1, 3, 256, 256]
---------------------------------------------------------------
Outputs
-------------------------
name:predict
tensor:Float[1, 2, 256, 256]
---------------------------------------------------------------
項(xiàng)目
代碼
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Drawing;
using System.Windows.Forms;
namespace OpenCvSharp_DNN_Demo
{
public partial class frmMain : Form
{
public frmMain()
{
InitializeComponent();
}
string fileFilter = '*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png';
string image_path = '';
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string modelpath;
int inpHeight;
int inpWidth;
Net opencv_net;
Mat BN_image;
Mat image;
Mat result_image;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
pictureBox2.Image = null;
textBox1.Text = '';
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void Form1_Load(object sender, EventArgs e)
{
string modelTxt = 'model/unet.prototxt';
string modelBin = 'model/unet.caffemodel';
inpHeight = 256;
inpWidth = 256;
opencv_net = CvDnn.ReadNetFromCaffe(modelTxt, modelBin);
image_path = 'test_img/person.jpg';
pictureBox1.Image = new Bitmap(image_path);
}
private unsafe void button2_Click(object sender, EventArgs e)
{
if (image_path == '')
{
return;
}
textBox1.Text = '檢測中,請稍等……';
pictureBox2.Image = null;
Application.DoEvents();
Mat src = new Mat(image_path);
int max_image_length = src.Cols > src.Rows ? src.Cols : src.Rows;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, src.Cols, src.Rows);
src.CopyTo(new Mat(max_image, roi));
Mat resize_image = max_image.Resize(new OpenCvSharp.Size(256, 256));
BN_image = CvDnn.BlobFromImage(resize_image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(127.5, 127.5, 127.5), true, false);
//float* ptr = (float*)BN_image.Data;
//for (int i = 0; i < 10; i++)
//{
// Console.WriteLine(ptr[i]);
//}
opencv_net.SetInput(BN_image, 'data');
dt1 = DateTime.Now;
Mat detection = opencv_net.Forward('predict');
//float* ptr2 = (float*)detection.Data;
//for (int i = 0; i < 10; i++)
//{
// Console.WriteLine(ptr2[i]);
//}
dt2 = DateTime.Now;
//得到的輸出是一個四維的mat格式數(shù)據(jù),大小為[1,2, 256, 256]
//首先將他reshape,設(shè)置成一通道,512行,256列,其中前256行與后256行是互補(bǔ)關(guān)系,對應(yīng)位置相加都為1
//前256行為背景的概率,后256行為人像的概率
Mat newMat = detection.Reshape(1, 512);
//獲取人像概率矩陣
newMat = newMat.RowRange(256, 512);
Mat result = new Mat();
newMat.ConvertTo(result, MatType.CV_8U, 255.0);
Cv2.Threshold(result, result, 127, 255, ThresholdTypes.Binary);
Mat result2 = Mat.Zeros(256, 256, MatType.CV_8UC3) * 255;
resize_image.CopyTo(result2, result);
Cv2.ImShow('黑白', result);
Cv2.ImShow('扣取', result2);
pictureBox2.Image = new Bitmap(result2.ToMemoryStream());
textBox1.Text = '推理耗時:' + (dt2 - dt1).TotalMilliseconds + 'ms';
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
}
}
/*
Inputs
-------------------------
name:data
tensor:Float[1, 3, 256, 256]
---------------------------------------------------------------
Outputs
-------------------------
name:predict
tensor:Float[1, 2, 256, 256]
---------------------------------------------------------------
*/