午夜视频在线网站,日韩视频精品在线,中文字幕精品一区二区三区在线,在线播放精品,1024你懂我懂的旧版人,欧美日韩一级黄色片,一区二区三区在线观看视频

分享

C# OnnxRuntime yolov11 detection

 吳敬銳 2024-11-17

說(shuō)明

官網(wǎng)地址:

https://github.com/ultralytics/ultralytics

圖片

效果

圖片

項(xiàng)目

圖片

模型信息

Model Properties
-------------------------
date:2024-10-06T16:52:12.968917
description:Ultralytics YOLO11n model trained on /usr/src/ultralytics/ultralytics/cfg/datasets/coco.yaml
author:Ultralytics
version:8.3.5
task:detect
license:AGPL-3.0 License (https:///license)
docs:https://docs.
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 84, 8400]
---------------------------------------------------------------

代碼

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = '*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png';
        string image_path = ''
        string model_path;
        string classer_path;
        public string[] class_names;
        public int class_num;

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int input_height;
        int input_width;
        float ratio_height;
        float ratio_width;

        InferenceSession onnx_session;

        int box_num;
        float conf_threshold;
        float nms_threshold;

        /// <summary>
        /// 選擇圖片
        /// </summary>
        /// <param name='sender'></param>
        /// <param name='e'></param>
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);

            textBox1.Text = '';
            pictureBox2.Image = null;
        }

        /// <summary>
        /// 推理
        /// </summary>
        /// <param name='sender'></param>
        /// <param name='e'></param>
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == '')
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = '';
            Application.DoEvents();

            Mat image = new Mat(image_path);
            
            //圖片縮放
            int height = image.Rows;
            int width = image.Cols;
            Mat temp_image = image.Clone();
            if (height > input_height || width > input_width)
            {
                float scale = Math.Min((float)input_height / height, (float)input_width / width);
                OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale));
                Cv2.Resize(image, temp_image, new_size);
            }
            ratio_height = (float)height / temp_image.Rows;
            ratio_width = (float)width / temp_image.Cols;
            Mat input_img = new Mat();
            Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0);

            //Cv2.ImShow('input_img', input_img);

            //輸入Tensor
            Tensor<float> input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            for (int y = 0; y < input_img.Height; y++)
            {
                for (int x = 0; x < input_img.Width; x++)
                {
                    input_tensor[0, 0, y, x] = input_img.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = input_img.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = input_img.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            List<NamedOnnxValue> input_container = new List<NamedOnnxValue>
            {
                NamedOnnxValue.CreateFromTensor('images', input_tensor)
            };

            //推理
            dt1 = DateTime.Now;
            var ort_outputs = onnx_session.Run(input_container).ToArray();
            dt2 = DateTime.Now;

            float[] data = Transpose(ort_outputs[0].AsTensor<float>().ToArray(), 4 + class_num, box_num);

            float[] confidenceInfo = new float[class_num];
            float[] rectData = new float[4];

            List<DetectionResult> detResults = new List<DetectionResult>();

            for (int i = 0; i < box_num; i++)
            {
                Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
                Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);

                float score = confidenceInfo.Max(); // 獲取最大值

                int maxIndex = Array.IndexOf(confidenceInfo, score); // 獲取最大值的位置

                int _centerX = (int)(rectData[0] * ratio_width);
                int _centerY = (int)(rectData[1] * ratio_height);
                int _width = (int)(rectData[2] * ratio_width);
                int _height = (int)(rectData[3] * ratio_height);

                detResults.Add(new DetectionResult(
                   maxIndex,
                   class_names[maxIndex],
                   new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height),
                   score));
            }

            //NMS
            CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
            detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();

            //繪制結(jié)果
            Mat result_image = image.Clone();
            foreach (DetectionResult r in detResults)
            {
                Cv2.PutText(result_image, $'{r.Class}:{r.Confidence:P0}', new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
            }

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = '推理耗時(shí):' + (dt2 - dt1).TotalMilliseconds + 'ms';

            button2.Enabled = true;
        }

        /// <summary>
        ///窗體加載
        /// </summary>
        /// <param name='sender'></param>
        /// <param name='e'></param>
        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = 'model/yolo11n.onnx';

            //創(chuàng)建輸出會(huì)話,用于輸出模型讀取信息
            SessionOptions options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 設(shè)置為CPU上運(yùn)行

            // 創(chuàng)建推理模型類,讀取模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 為onnx模型文件的路徑

            input_height = 640;
            input_width = 640;

            box_num = 8400;
            conf_threshold = 0.25f;
            nms_threshold = 0.5f;

            classer_path = 'model/lable.txt';
            class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
            class_num = class_names.Length;

            image_path = 'test_img/zidane.jpg';
            pictureBox1.Image = new Bitmap(image_path);

        }

        /// <summary>
        /// 保存
        /// </summary>
        /// <param name='sender'></param>
        /// <param name='e'></param>
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            SaveFileDialog sdf = new SaveFileDialog();
            sdf.Title = '保存';
            sdf.Filter = 'Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf';
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show('保存成功,位置:' + sdf.FileName);
            }
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            ShowNormalImg(pictureBox2.Image);
        }

        public  void ShowNormalImg(Image img)
        {
            if (img == null) return;

            frmShow frm = new frmShow();

            frm.Width = Screen.PrimaryScreen.Bounds.Width;
            frm.Height = Screen.PrimaryScreen.Bounds.Height;

            if (frm.Width > img.Width)
            {
                frm.Width = img.Width;
            }

            if (frm.Height > img.Height)
            {
                frm.Height = img.Height;
            }

            bool b = frm.richTextBox1.ReadOnly;
            Clipboard.SetDataObject(img, true);
            frm.richTextBox1.ReadOnly = false;
            frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap));
            frm.richTextBox1.ReadOnly = b;

            frm.ShowDialog();

        }

        public unsafe float[] Transpose(float[] tensorData, int rows, int cols)
        {
            float[] transposedTensorData = new float[tensorData.Length];

            fixed (float* pTensorData = tensorData)
            {
                fixed (float* pTransposedData = transposedTensorData)
                {
                    for (int i = 0; i < rows; i++)
                    {
                        for (int j = 0; j < cols; j++)
                        {
                            int index = i * cols + j;
                            int transposedIndex = j * rows + i;
                            pTransposedData[transposedIndex] = pTensorData[index];
                        }
                    }
                }
            }
            return transposedTensorData;
        }
    }

    public class DetectionResult
    {
        public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence)
        {
            this.ClassId = ClassId;
            this.Confidence = Confidence;
            this.Rect = Rect;
            this.Class = Class;
        }

        public string Class { get; set; }

        public int ClassId { get; set; }

        public float Confidence { get; set; }

        public Rect Rect { get; set; }

    }

}

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約